Petrophysics is the science of evaluating the rock and fluid properties of oil, gas and water reservoirs through the acquisition of physical samples, electrical, chemical, nuclear and magnetic data acquired by surface logging, downhole coring, and drilling and wireline sondes. The evaluation, analysis and interpretation of this data is as much an art as a science as it requires an understanding of geology, chemistry, physics, electronics, mechanics and drilling technology. The techniques have been developed over the last 100 years primarily by the oil and gas industry, but the principles are equally relevant in coal mining, hydrogeology and environmental science. This book is firmly aimed at students of geology and petroleum engineering looking for a practical understanding of the background and workflows required to complete a petrophysical study of a well, a reservoir or a field. Petrophysics is log analysis constrained by geology, and if we ignore the rocks we risk making poor investment decisions.

The interpretation of geophysical data in exploration geophysics, well logging, engineering, mining and environmental geophysics requires knowledge of the physical properties of rocks and their correlations. Physical properties are a “key” for combined interpretation techniques. The study of rock physics provides an interdisciplinary treatment of physical properties, whether related to geophysical, geotechnical, hydrological or geological methodology. Physical Properties of Rocks, 2nd Edition, describes the physical fundamentals of rock properties, based on typical experimental results and relevant theories and models. It provides readers with all relevant rock properties and their interrelationships in one concise volume. Furthermore, it guides the reader through experimental and theoretical knowledge in order to handle models and theories in practice. Throughout the book the author focuses on the problems of applied geophysics with respect to exploration and the expanding field of applications in engineering and mining geophysics, geotechnics, hydrology and environmental problems, and the properties under the conditions of the upper Earth crust. Physical Properties of Rocks, Second Edition, guides readers through a systematic presentation of all relevant physical properties and their interrelationships in parallel with experimental and theoretical basic knowledge and a guide for handling core models and theories.

Providing a balance between principles and practice, this state-of-the-art overview of geophysical methods takes readers from the basic physical phenomena, through the acquisition and processing of data, to the creation of geological models of the subsurface and data interpretation to find hidden mineral deposits. Detailed descriptions of all the commonly used geophysical methods are given, including gravity, magnetic, radiometric, electrical, electromagnetic and seismic methods. Each technique is described in a consistent way and without complex mathematics. Emphasising extraction of maximum
geological information from geophysical data, the book also explains petrophysics, data modelling and common interpretation pitfalls. Packed with full-colour figures, also available online, the text is supported by selected examples from around the world, including all the major deposit types. Designed for advanced undergraduate and graduate courses in minerals geoscience, this is also a valuable reference for professionals in the mining industry wishing to make greater use of geophysical methods. In 2015, Dentith and Mudge won the ASEG Lindsay Ingall Memorial Award for their combined effort in promoting geophysics to the wider community with the publication of this title.

Shared Earth Modeling introduces the reader to the processes and concepts needed to develop shared earth models. Shared earth modeling is a cutting-edge methodology that offers a synthesis of modeling paradigms to the geoscientist and petroleum engineer to increase reservoir output and profitability and decrease guesswork. Topics range from geology, petrophysics, and geophysics to reservoir engineering, reservoir simulation, and reservoir management. Shared Earth Modeling is a technique for combining the efforts of reservoir engineers, geophysicists, and petroleum geologists to create a simulation of a reservoir. Reservoir engineers, geophysicists, and petroleum geologists can create separate simulations of a reservoir that vary depending on the technology each scientist is using. Shared earth modeling allows these scientists to consolidate their findings and create an integrated simulation. This gives a more realistic picture of what the reservoir actually looks like, and thus can drastically cut the costs of drilling and time spent mapping the reservoir. First comprehensive publication about Shared Earth Modeling Details cutting edge methodology that provides integrated reservoir simulations

Written by some of the world's most renowned petroleum and environmental engineers, Fundamentals of the Petrophysics of Oil and Gas Reservoirs is the first book to offer the practicing engineer and engineering student these new cutting-edge techniques for prediction in petroleum engineering and environmental management. In this book, the authors combine a rigorous, yet easy to understand, approach to petrophysics and how it is applied to petroleum and environmental engineering to solve multiple problems that the engineer or geologist faces every day. Useful in the prediction of everything from crude oil composition, pore size distribution in reservoir rocks, groundwater contamination, and other types of forecasting, this approach provides engineers and students alike with a convenient guide to many real-world applications. Petroleum geologists and engineers must have a working knowledge of petrophysics in order to find oil reservoirs and devise the best plan for getting it out of the ground, before drilling can begin. This book offers the engineer and geologist a fundamental guide for accomplishing these goals, providing much-needed calculations and formulas on fluid flow, rock properties, and many other topics that are encountered every day. The approach taken in Fundamentals of the Petrophysics of Oil and Gas Reservoirs is unique and has not been addressed until now in book format. Readers now have the ability to review the historic development of relationships and equations to define critical petrophysics attributes, many of which have either never been covered in the literature on petrophysics. Useful for the veteran engineer or scientist and the student alike, this book is a must-have for any geologist, engineer, or student working in the field of upstream petroleum engineering. This groundbreaking new volume includes: How to achieve more efficient oil & gas production for the petroleum engineer and petroleum geologist More accurate forecasting for the environment engineer Real-world examples for the engineering student Valuable new information not available anywhere else

Practical Petrophysics looks at both the principles and practice of petrophysics in understanding petroleum reservoirs. It concentrates on the tools and techniques in everyday use, and addresses all types of reservoirs, including unconventionals. The book provides useful explanations on how to perform fit for purpose interpretations of petrophysical data, with emphasis on what the interpreter needs and what is practically possible with real data. Readers are not limited to static reservoir properties for input to volumetrics, as the book also includes applications such as reservoir performance, seismic attribute, geo-mechanics, source rock characterization, and more. Principles and practice are given equal emphasis Simple models and concepts explain the underlying principles Extensive use of contemporary, real-life examples

Earth science is becoming increasingly quantitative in the digital age. Quantification of geoscience and engineering problems underpins many of the applications of big data and artificial intelligence. This book presents quantitative geosciences in three parts. Part 1 presents data analytics using probability, statistical and machine-learning methods. Part 2 covers reservoir characterization using several geoscience disciplines: including geology, geophysics, petrophysics and geostatistics. Part 3 treats reservoir modeling, resource
evaluation and uncertainty analysis using integrated geoscience, engineering and
geostatistical methods. As the petroleum industry is heading towards operating oil fields
digitally, a multidisciplinary skillset is a must for geoscientists who need to use data
analytics to resolve inconsistencies in various sources of data, model reservoir
properties, evaluate uncertainties, and quantify risk for decision making. This book
intends to serve as a bridge for advancing the multidisciplinary integration for digital
fields. The goal is to move beyond using quantitative methods individually to an integrated
descriptive-quantitative analysis. In big data, everything tells us something, but nothing
tells us everything. This book emphasizes the integrated, multidisciplinary solutions for
practical problems in resource evaluation and field development.

A practical, fast-paced approach to teaching the concepts and problems common in petroleum
engineering that will appeal to a wide range of disciplines Petrophysics is the study of
rock properties and their interactions with fluids, including gases, liquid hydrocarbons,
and aqueous solutions. This three-volume series from distinguished University of Texas
professor Dr. Ekwere J. Peters provides a basic understanding of the physical properties of
permeable geologic rocks and the interactions of the various fluids with their interstitial
surfaces, with special focus on the transport properties of rocks for single-phase and
multiphase flow. Based on Dr. Peters's graduate course that has been taught internationally
in corporations and classrooms, the series covers core topics and includes full-color CT
and NMR images, graphs, and figures to illustrate practical application of the material.
Topics addressed in volume 2 (chapters 5-8) include Dispersion in porous media Interfacial
phenomena and wettability Capillary pressure Relative permeability Advanced Petrophysics
features over 140 exercises designed to strengthen learning and extend concepts into
practice. Additional information in the appendices covers dimensional analysis and a series
of real-world projects that enable the student to apply the principles presented in the
text to build a petrophysical model using well logs and core data from a major petroleum-
producing province.

The Handbook of Borehole Acoustics and Rock Physics for Reservoir Characterization combines
in a single useful handbook the multidisciplinary domains of the petroleum industry,
including the fundamental concepts of rock physics, acoustic logging, waveform processing,
and geophysical application modeling through graphical examples derived from field data. It
includes results from core studies, together with graphics that validate and support the
modeling process. and explores all possible facets of acoustic applications in reservoir
evaluation for hydrocarbon exploration, development, and drilling support. The Handbook of
Borehole Acoustics and Rock Physics for Reservoir Characterization serves as a technical
guide and research reference for oil and gas professionals, scientists, and students in the
multidisciplinary field of reservoir characterization through the use of petrosonics. It
overviews the fundamentals of borehole acoustics and rock physics, with a focus on
reservoir evaluation applications, explores current advancements through updated research,
and identifies areas of future growth. Presents theory, application, and limitations of
borehole acoustics and rock physics through field examples and case studies Features
"Petrosonic Workflows" for various acoustic applications and evaluations, which can be
easily adapted for practical reservoir modeling and interpretation Covers the potential
advantages of acoustic-based techniques and summarizes key results for easy geophysical
application

Shale Gas: Exploration and Environmental and Economic Impacts explores the shale gas
exploration and production activities that are increasing globally, also presenting a basic
understanding on the geological, geochemical, and geophysical aspects. The book is a key reference that is useful for researchers, the oil and gas industry, and policymakers in gas producing and prospective countries. Users will find chapters on hydraulic fracturing and shale gas drilling, as well as the environmental and economic impacts of these activities. Further chapters include case studies on the shale gas revolution in the United States and other producing countries around the world. Provides wide-ranging coverage of both the environmental and economic impacts of shale gas exploration. Includes case studies that describe the prolific and potential shale gas systems from both producing and prospective countries. Appeals to both those in academia and those in the unconventional gas exploration industry.


Unconventional Oil and Gas Resources Handbook: Evaluation and Development is a must-have, helpful handbook that brings a wealth of information to engineers and geoscientists. Bridging between subsurface and production, the handbook provides engineers and geoscientists with effective methodology to better define resources and reservoirs. Better reservoir knowledge and innovative technologies are making unconventional resources economically possible, and multidisciplinary approaches in evaluating these resources are critical to successful development. Unconventional Oil and Gas Resources Handbook takes this approach, covering a wide range of topics for developing these resources, including exploration, evaluation, drilling, completion, and production. Topics include theory, methodology, and case histories and will help to improve the understanding, integrated evaluation, and effective development of unconventional resources. Presents methods for a full development cycle of unconventional resources, from exploration through production. Explores multidisciplinary integrations for evaluation and development of unconventional resources and covers a broad range of reservoir characterization methods and development scenarios. Delivers balanced information with multiple contributors from both academia and industry. Provides case histories involving geological analysis, geomechanical analyses, reservoir modeling, hydraulic fracturing treatment, microseismic monitoring, well performance, and refracturing for development of unconventional reservoirs.

Formation Evaluation with Pre-Digital Well Logs covers the practical use of legacy materials for formation evaluation using wireline logging equipment from 1927 until the introduction of digital logging in the 1960s and '70s. The book provides powerful interpretation techniques that can be applied today when an analyst is faced with a drawer full of old "E logs." It arms the engineer, geologist, and petrophysicist with the tools needed to profitably plan re-completions or in-fill drilling in old fields that may have been acquired for modern deeper and/or horizontal drilling. Includes more than 150 figures, log examples, charts, and graphs. Provides work exercises for the reader to practice log analysis and formation evaluation. Presents an important source for academia, oil and gas professionals, service company personnel, and the banking and asset evaluation teams at consultancies involved in reserve and other property evaluation.

Reservoir Formation Damage, Second edition is a comprehensive treatise of the theory and modeling of common formation damage problems and is an important guide for research and development, laboratory testing for diagnosis and effective treatment, and tailor-fit-design of optimal strategies for mitigation of reservoir formation damage. The new edition includes field case histories and simulated scenarios demonstrating the consequences of formation damage in petroleum reservoirs. Faruk Civan, Ph.D., is an Alumni Chair Professor in the Mewbourne School of Petroleum and Geological Engineering at the University of Oklahoma in Norman. Dr. Civan has received numerous honors and awards, including five distinguished lectureship awards and the 2003 SPE Distinguished Achievement Award for Petroleum Engineering Faculty. Petroleum engineers and managers get critical material on evaluation, prevention, and remediation of formation damage which can save or cost millions in profits from a mechanistic point of view. State-of-the-Art knowledge and valuable insights into the nature of processes and operational practices causing formation damage. Provides new strategies designed to minimize the impact of and avoid formation damage in petroleum reservoirs with the newest drilling, monitoring, and detection techniques.

Unconventional reservoirs are usually complex and highly heterogeneous, such as shale, coal, and tight sandstone reservoirs. The strong physical and chemical interactions between fluids and pore surfaces lead to the inapplicability of conventional approaches for characterizing fluid flow in these low-porosity and ultralow-permeability reservoirs.
systems. Therefore, new theories and techniques are urgently needed to characterize petrophysical properties, fluid transport, and their relationships at multiple scales for improving production efficiency from unconventional reservoirs. This book presents fundamental innovations gathered from 21 recent works on novel applications of new techniques and theories in unconventional reservoirs, covering the fields of petrophysical characterization, hydraulic fracturing, fluid transport physics, enhanced oil recovery, and geothermal energy. Clearly, the research covered in this book is helpful to understand and master the latest techniques and theories for unconventional reservoirs, which have important practical significance for the economic and effective development of unconventional oil and gas resources.

The petroleum geologist and engineer must have a working knowledge of petrophysics in order to find oil reservoirs, devise the best plan for getting it out of the ground, then start drilling. This book offers the engineer and geologist a manual to accomplish these goals, providing much-needed calculations and formulas on fluid flow, rock properties, and many other topics that are encountered every day. New updated material covers topics that have emerged in the petrochemical industry since 1997. Contains information and calculations that the engineer or geologist must use in daily activities to find oil and devise a plan to get it out of the ground. Filled with problems and solutions, perfect for use in undergraduate, graduate, or professional courses. Covers real-life problems and cases for the practicing engineer.

This hand guide in the Gulf Drilling Guides series offers practical techniques that are valuable to petrophysicists and engineers in their day-to-day jobs. Based on the author’s many years of experience working in oil companies around the world, this guide is a comprehensive collection of techniques and rules of thumb that work. The primary functions of the drilling or petroleum engineer are to ensure that the right operational decisions are made during the course of drilling and testing a well, from data gathering, completion and testing, and thereafter to provide the necessary parameters to enable an accurate static and dynamic model of the reservoir to be constructed. This guide supplies these, and many other, answers to their everyday problems. There are chapters on NMR logging, core analysis, sampling, and interpretation of the data to give the engineer a full picture of the formation. There is no other single guide like this, covering all aspects of well logging and formation evaluation, completely updated with the latest techniques and applications. A valuable reference dedicated solely to well logging and formation evaluation. Comprehensive coverage of the latest technologies and practices, including, troubleshooting for stuck pipe, operational decisions, and logging contracts. Packed with money-saving and time-saving strategies for the engineer working in the field.

Presents numerical methods for reservoir simulation, with efficient implementation and examples using widely-used online open-source code, for researchers, professionals and advanced students. This title is also available as Open Access on Cambridge Core.

Core Analysis: A Best Practice Guide is a practical guide to the design of core analysis programs. Written to address the need for an updated set of recommended practices covering special core analysis and geomechanics tests, the book also provides unique insights into data quality control diagnosis and data utilization in reservoir models. The book's best practices and procedures benefit petrophysicists, geoscientists, reservoir engineers, and production engineers, who will find useful information on core data in reservoir static and dynamic models. It provides a solid understanding of the core analysis procedures and methods used by commercial laboratories, the details of lab data reporting required to create quality control tests, and the diagnostic plots and protocols that can be used to identify suspect or erroneous data. Provides a practical overview of core analysis, from coring at the well site to laboratory data acquisition and interpretation. Defines current best practice in core analysis preparation and test procedures, and the diagnostic tools used to quality control core data. Provides essential information on design of core analysis programs and to judge the quality and reliability of core analysis data ultimately used in reservoir evaluation. Of specific interest to those working in core analysis, porosity, relative permeability, and geomechanics.

Due to the influence of pore-throat size distribution, pore connectivity, and microscale fractures, the transport, distribution, and residual saturation of fluids in porous media are difficult to characterize. Petrophysical methods in natural porous media have attracted great attention in a variety of fields, especially in the oil and gas industry. A wide range of research studies have been conducted on the characterization of porous media covers and multiphase flow therein. Reliable approaches for characterizing microstructure and multiphase flow in porous media are crucial in many fields, including the characterization of residual water or oil in hydrocarbon reservoirs and the long-term
storage of supercritical CO2 in geological formations. This book gathers together 15 recent works to emphasize fundamental innovations in the field and novel applications of petrophysics in unconventional reservoirs, including experimental studies, numerical modeling (fractal approach), and multiphase flow modeling/simulations. The relevant stakeholders of this book are authorities and service companies working in the petroleum, subsurface water resources, air and water pollution, environmental, and biomaterial sectors.

Written by some of the world's most renowned petroleum and environmental engineers, Petrophysics: The Fundamentals of Oil and Gas Reservoirs is the first book to offer the practicing engineer and engineering student these new cutting-edge techniques for prediction and forecasting in petroleum engineering and environmental management.


What makes this book so different and valuable to the engineer is the accompanying software, used by reservoir engineers all over the world every day. The new software, IFLO (replacing WINB4D, in previous editions), is a simulator that the engineer can easily install in a Windows operating environment. IFLO generates simulations of how the well can be tapped and feeds this to the engineer in dynamic 3D perspective. This completely new software is much more functional, with better graphics and more scenarios from which the engineer can generate simulations. BENEFIT TO THE READER: This book and software helps the reservoir engineer do his or her job on a daily basis, better, more economically, and more efficiently. Without simulations, the reservoir engineer would not be able to do his or her job at all, and the technology available in this product is far superior to most companies' internal simulation software.

This Handbook provides solutions to the fundamental issues associated with wells and reservoirs experiencing sanding problems, especially in deepwater environments. Sand Management is a massive challenge for the petroleum industry as it extends its exploration activities to new frontiers. Challenging ultra deepwater, High Pressure-High Temperature (HP-HT) and Arctic environments require engineers to drill more complex wells and manage more complex reservoirs, the majority of which are prone to massive sand production. Covering such fundamentals as how to maximize individual wells and field development performance, as well as how to minimize operational cost, non-productive time and guarantee flow assurance across the entire composite production system from reservoirs through the wellbore to the topside and flow lines, this handbook explains that the biggest challenge facing operators is the shortage of sand management personnel and helps companies realize the value of their assets. Reference for knowledge transfer and skills development in sand management for effective flow assurance Emphasis on HP-HT and deepwater environments Meets the needs of new and practising engineers alike as well as non-technical personnel supporting the offshore industry.

The first edition of this book demystified the process of well log analysis for students, researchers and practitioners. In the two decades since, the industry has changed...
enormously: technical staffs are smaller, and hydrocarbons are harder to locate, quantify, and produce. New drilling techniques have engendered new measurement devices incorporated into the drilling string. Corporate restructuring and the "graying" of the workforce have caused a scarcity in technical competence involved in the search and exploitation of petroleum. The updated 2nd Edition reviews logging measurement technology developed in the last twenty years, and expands the petrophysical applications of the measurements.

This publication is a general introduction to common openhole logging measurements, both wire line and MWD/LWD, and the interpretation of those measurements to determine the traditional analytical goals of porosity, fluid saturation, and lithology/mineralogy. It is arranged by the interpretation goals of the data, rather than by the underlying physics of the measurements. The appendix files contain digital versions of the data from the case studies, a summary guide to the measurements and their interpretation, and a simple spreadsheet containing some of the more common interpretation algorithms.

Petrophysics is the science of evaluating the rock and fluid properties of oil, gas and water reservoirs through the acquisition of physical samples, electrical, chemical, nuclear and magnetic data acquired by surface logging, downhole coring, and drilling and wireline sondes. The evaluation, analysis and interpretation of this data is as much an art as a science as it requires an understanding of geology, chemistry, physics, electronics, mechanics and drilling technology. The techniques have been developed over the last 100 years primarily by the oil and gas industry, but the principles are equally relevant in coal mining, hydrogeology and environmental science. This book is firmly aimed at students of geology and petroleum engineering looking for a practical understanding of the background and workflows required to complete a petrophysical study of a well, a reservoir or a field. Petrophysics is log analysis constrained by geology, and if we ignore the rocks we risk making poor investment decisions.

The applications of nuclear magnetic resonance (NMR) to petroleum exploration and production have become more and more important in recent years. The development of the NMR logging technology and the NMR applications to core analysis and formation evaluation have been very rapid and extensive. The scope of this book covers a wide range of NMR related petrophysical measurements on cores including brief descriptions of recent applications of Magic Angle Spinning (MAS) NMR and the basics of NMR imaging of cores. In the discussion of NMR logging applications various schemes of using NMR logs to obtain necessary information for formation evaluation are outlined, such as irreducible water saturation determination, hydrocarbon typing, oil viscosity estimation, and permeability prediction. The principles of these applications are discussed using schematic diagrams for illustration. A unique aspect of the book is that it provides a detailed account of the basic principles of spin diffusion and relaxation in porous media. Another important area that is covered is the inversion of NMR data into a distribution of amplitudes associated with relaxation time which provides the basic information needed to interpret the NMR measurements obtained from logging.

Presents key concepts and terminology for a multidisciplinary range of topics in petroleum engineering Places oil and gas production in the global energy context Introduces all of the key concepts that are needed to understand oil and gas production from exploration through abandonment Reviews fundamental terminology and concepts from geology, geophysics, petrophysics, drilling, production and reservoir engineering Includes many worked practical examples within each chapter and exercises at the end of each chapter highlight and reinforce material in the chapter Includes a solutions manual for academic adopters

Geologists, engineers, and petrophysicists concerned with hydrocarbon production from naturally fractured reservoirs will find this book a valuable tool for obtaining pertinent rock data to evaluate reserves and optimize well location and performance. Nelson emphasizes geological, petrophysical, and rock mechanics to complement other studies of the subject that use well logging and classical engineering approaches. This well organized, updated edition contains a wealth of field and laboratory data, case histories, and practical advice. A great how-to-guide for anyone working with fractured or highly anisotropic reservoirs Provides real-life illustrations through case histories and field and laboratory data

This book presents selected articles from the workshop on "Challenges in Petrophysical Evaluation and Rock Physics Modeling of Carbonate Reservoirs" held at IIT Bombay in November 2017. The articles included explore the challenges associated with using well-log
data, core data analysis, and their integration in the qualitative and quantitative assessment of petrophysical and elastic properties in carbonate reservoirs. The book also discusses the recent trends and advances in the area of research and development of carbonate reservoir characterization, both in industry and academia. Further, it addresses the challenging concept of porosity portioning, which has huge implications for exploration and development success in these complex reservoirs, enabling readers to understand the varying orders of deposition and diagenesis and also to model the flow and elastic properties.

The objective of the Ferron Sandstone project was to develop a comprehensive, interdisciplinary, quantitative characterization of a fluvial-deltaic reservoir to allow realistic inter-well and reservoir-scale models to be developed for improved oil-field development in similar reservoirs world-wide. Quantitative geological and petrophysical information on the Cretaceous Ferron Sandstone in east-central Utah was collected. Both new and existing data were integrated into a three-dimensional model of spatial variations in porosity, storativity, and tensorial rock permeability at a scale appropriate for inter-well to regional-scale reservoir simulation. Simulation results could improve reservoir management through proper infill and extension drilling strategies, reduction of economic risks, increased recovery from existing oil fields, and more reliable reserve calculations. This 471-page report describes the geological and petrophysical characteristics of the fluvial-deltaic Upper Cretaceous Ferron Sandstone. The report includes Ferron facies analysis, regional sequence stratigraphy, evaluation of three case-study areas, geostatistics, and a 3-D oil and gas reservoir simulation of the Ferron.

A comprehensive textbook presenting techniques for the analysis and characterization of shale plays Significant reserves of hydrocarbons cannot be extracted using conventional methods. Improvements in techniques such as horizontal drilling and hydraulic fracturing have increased access to unconventional hydrocarbon resources, ushering in the “shale boom” and disrupting the energy sector. Unconventional Hydrocarbon Resources: Techniques for Reservoir Engineering Analysis covers the geochemistry, petrophysics, and economics of unconventional shale oil plays. The text uses a step-by-step approach to demonstrate industry-standard workflows for calculating resource volume and optimizing the extraction process. Volume highlights include: Methods for rock and fluid characterization of unconventional shale plays A workflow for analyzing wells with stimulated reservoir volume regions An unconventional approach to understanding of fluid flow through porous media A comprehensive summary of discoveries of massive shale resources worldwide Data from Eagle Ford, Woodford, Wolfcamp, and The Bakken shale plays Examples, homework assignments, and access to supplementary online resources Hands-on teaching materials for use in petroleum engineering software applications The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals.

The pioneering work of Gus Archie moved log interpretation into log analysis with the introduction of the equation that bears his name. Subsequent developments have mixed empiricism, physics, mathematical algorithms, and geological or engineering models as methods applied to petrophysical measurements in boreholes all over the world. Principles of Mathematical Petrophysics reviews the application of mathematics to petrophysics in a format that crystallizes the subject as a subdiscipline appropriate for the workstations of today. The subject matter is of wide interest to both academic and industrial professionals who work with subsurface data applied to energy, hydrology, and environmental issues. This book is the first of its kind, in that it addresses mathematical petrophysics as a distinct discipline. Other books in petrophysics are either extensive descriptions of tool design or interpretation techniques, typically in an ad hoc treatment. It covers mathematical methods that are applied to borehole and core petrophysical measurements to estimate rock properties of fluid saturation, pore types, permeability, mineralogy, facies, and reservoir characterization. These methods are demonstrated by a variety of case studies and summaries of applications. Principles of Mathematical Petrophysics is an invaluable resource for all people working with data related to petrophysics.

This interdisciplinary book encompasses the fields of rock mechanics, structural geology and petroleum engineering to address a wide range of geomechanical problems that arise during the exploitation of oil and gas reservoirs. It considers key practical issues such as prediction of pore pressure, estimation of hydrocarbon column heights and fault seal potential, determination of optimally stable well trajectories, casing set points and mud weights, changes in reservoir performance during depletion, and production-induced faulting and subsidence. The book establishes the basic principles involved before introducing practical measurement and experimental techniques to improve recovery and reduce
exploitation costs. It illustrates their successful application through case studies taken
from oil and gas fields around the world. This book is a practical reference for
geoscientists and engineers in the petroleum and geothermal industries, and for research
scientists interested in stress measurements and their application to problems of faulting
and fluid flow in the crust.

Copyright code: 33050ebb8ef268b57e6eba443ab2a4e